01 | 词云

准备

安装包

pip install wordcloud matplotlib jieba PIL

准备一些文本,英文或中文皆可

一个简单的例子

WordCloud()可选的参数

  • font_path:可用于指定字体路径,包括otfttf

  • width:词云的宽度,默认为400

  • height:词云的高度,默认为200

  • mask:蒙版,可用于定制词云的形状

  • min_font_size:最小字号,默认为4

  • max_font_size:最大字号,默认为词云的高度

  • max_words:词的最大数量,默认为200

  • stopwords:将被忽略的停用词,如果不指定则使用默认的停用词词库

  • background_color:背景颜色,默认为`black

  • mode:默认为RGB模式,如果为RGBA模式且background_color设为None,则背景将透明


# -*- coding: utf-8 -*-

from wordcloud import WordCloud
import matplotlib.pyplot as plt

# 打开文本
text = open('constitution.txt').read()
# 生成对象
wc = WordCloud().generate(text)

# 显示词云
plt.imshow(wc, interpolation='bilinear')
plt.axis('off')
plt.show()

# 保存到文件
wc.to_file('wordcloud.png')

由于英文单词之间有空格分隔,因此大多不需要额外的处理

中文词云

中文一般需要经过分词处理,先看下不分词的效果

以《西游记》为例,可以看到结果中会出现各种双字、三字和四字等,但很多并不是合理的词语


# -*- coding: utf-8 -*-

from wordcloud import WordCloud
import matplotlib.pyplot as plt

# 打开文本
text = open('xyj.txt').read()
# 生成对象
wc = WordCloud(font_path='Hiragino.ttf', width=800, height=600, mode='RGBA', background_color=None).generate(text)

# 显示词云
plt.imshow(wc, interpolation='bilinear')
plt.axis('off')
plt.show()

# 保存到文件
wc.to_file('wordcloud.png')

这次我们先用jieba进行中文分词,可以看到生成的词云里,基本上都是合理的词语了


# -*- coding: utf-8 -*-

from wordcloud import WordCloud
import matplotlib.pyplot as plt
import jieba

# 打开文本
text = open('xyj.txt').read()

# 中文分词
text = ' '.join(jieba.cut(text))
print(text[:100])

# 生成对象
wc = WordCloud(font_path='Hiragino.ttf', width=800, height=600, mode='RGBA', background_color=None).generate(text)

# 显示词云
plt.imshow(wc, interpolation='bilinear')
plt.axis('off')
plt.show()

# 保存到文件
wc.to_file('wordcloud.png')

使用蒙版

这里将mask翻译为蒙版,是因为感觉它和Photoshop中蒙版的作用很类似

使用蒙版之后,可以根据提供的蒙版图片,生成指定形状的词云


# -*- coding: utf-8 -*-

from wordcloud import WordCloud
from PIL import Image
import numpy as np
import matplotlib.pyplot as plt
import jieba

# 打开文本
text = open('xyj.txt').read()

# 中文分词
text = ' '.join(jieba.cut(text))
print(text[:100])

# 生成对象
mask = np.array(Image.open("black_mask.png"))
wc = WordCloud(mask=mask, font_path='Hiragino.ttf', mode='RGBA', background_color=None).generate(text)

# 显示词云
plt.imshow(wc, interpolation='bilinear')
plt.axis("off")
plt.show()

# 保存到文件
wc.to_file('wordcloud.png')

颜色

词云的颜色可以从蒙版中抽取,使用ImageColorGenerator()即可


# -*- coding: utf-8 -*-

from wordcloud import WordCloud, ImageColorGenerator
from PIL import Image
import numpy as np
import matplotlib.pyplot as plt
import jieba

# 打开文本
text = open('xyj.txt').read()

# 中文分词
text = ' '.join(jieba.cut(text))
print(text[:100])

# 生成对象
mask = np.array(Image.open("color_mask.png"))
wc = WordCloud(mask=mask, font_path='Hiragino.ttf', mode='RGBA', background_color=None).generate(text)

# 从图片中生成颜色
image_colors = ImageColorGenerator(mask)
wc.recolor(color_func=image_colors)

# 显示词云
plt.imshow(wc, interpolation='bilinear')
plt.axis("off")
plt.show()

# 保存到文件
wc.to_file('wordcloud.png')

当然也可以设置为纯色,增加一个配色函数即可


# -*- coding: utf-8 -*-

from wordcloud import WordCloud
from PIL import Image
import numpy as np
import matplotlib.pyplot as plt
import random
import jieba

# 打开文本
text = open('xyj.txt').read()

# 中文分词
text = ' '.join(jieba.cut(text))
print(text[:100])

# 颜色函数
def random_color(word, font_size, position, orientation, font_path, random_state):
    s = 'hsl(0, %d%%, %d%%)' % (random.randint(60, 80), random.randint(60, 80))
    print(s)
    return s

# 生成对象
mask = np.array(Image.open("color_mask.png"))
wc = WordCloud(color_func=random_color, mask=mask, font_path='Hiragino.ttf', mode='RGBA', background_color=None).generate(text)

# 显示词云
plt.imshow(wc, interpolation='bilinear')
plt.axis("off")
plt.show()

# 保存到文件
wc.to_file('wordcloud.png')

关于HSL配色方案可以参考

www.w3.org/wiki/CSS3/Color/HSL

精细控制

如果希望精细地控制词云中出现的词,以及每个词的大小,可以尝试generate_from_frequencies(),包括两个参数

  • frequencies:一个字典,用于指定词和对应的大小
  • max_font_size:最大字号,默认为None

generate() = process_text() + generate_from_frequencies()

以下用jieba提取出关键词和权重,再以此绘制词云


# -*- coding: utf-8 -*-

from wordcloud import WordCloud, ImageColorGenerator
from PIL import Image
import numpy as np
import matplotlib.pyplot as plt
import jieba.analyse

# 打开文本
text = open('xyj.txt').read()

# 提取关键词和权重
freq = jieba.analyse.extract_tags(text, topK=200, withWeight=True)
print(freq[:20])
freq = {i[0]: i[1] for i in freq}

# 生成对象
mask = np.array(Image.open("color_mask.png"))
wc = WordCloud(mask=mask, font_path='Hiragino.ttf', mode='RGBA', background_color=None).generate_from_frequencies(freq)

# 从图片中生成颜色
image_colors = ImageColorGenerator(mask)
wc.recolor(color_func=image_colors)

# 显示词云
plt.imshow(wc, interpolation='bilinear')
plt.axis("off")
plt.show()

# 保存到文件
wc.to_file('wordcloud.png')

参考

results matching ""

    No results matching ""